Skip to main content
Log in

On the energy spectra of secondary ions emitted from silicon and graphite single crystals

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Secondary ion emission from silicon and graphite single crystals bombarded by argon ions with energies E 0 varied from 1 to 10 keV at various angles of incidence α has been studied. The evolution of the energy spectra of C+ and Si+ secondary ions has been traced in which the positions of maxima (E max) shift toward higher secondary-ion energies E 1 with increasing polar emission angle θ (measured from the normal to the sample surface). The opposite trend has been observed for ions emitted from single crystals heated to several hundred degrees Centigrade; the E max values initially remain unchanged and then shift toward lower energies E 1 with increasing angle θ. It is established that the magnitude and position of a peak in the energy spectrum of secondary C+ ions is virtually independent of E 0, angle α, and the surface relief of the sample (in the E 0 and α intervals studied). Unusual oscillating energy distributions are discussed, which have been observed for secondary ions emitted from silicon (111) and layered graphite (0001) faces. Numerical simulations of secondary ion sputtering and charge exchange have been performed. A comparison of the measured and calculated data for graphite crystals has shown that C+ ions are formed as a result of charge exchange between secondary ions and bombarding Ar+ ions, which takes place both outside and inside the target. This substantially differs from the ion sputtering process in metals and must be taken into account when analyzing secondary ion emission mechanisms and in practical applications of secondary-ion mass spectrometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Fano and W. Lichten, Phys. Rev. Lett. 14, 627 (1965).

    Article  ADS  Google Scholar 

  2. G. Blaise and M. Bernheim, Surf. Sci. 47, 324 (1975).

    Article  ADS  Google Scholar 

  3. R. L. Erickson and D. P. Smith, Phys. Rev. Lett. 34, 297 (1975).

    Article  ADS  Google Scholar 

  4. I. F. Urazgil’din, Izv. Akad. Nauk SSSR, Ser. Fiz. 60, 48 (1976).

    Google Scholar 

  5. V. I. Veksler, Secondary Ion Emission from Metals (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  6. Sputtering by Particle Bombardment, Ed. by R. Behrisch and K. Wittmaack (Springer-Verlag, Berlin, 1991).

    Google Scholar 

  7. Z. Sroubek and J. Fine, Nucl. Instrum. Methods Phys. Res., Sect. B 100, 253 (1995).

    Article  ADS  Google Scholar 

  8. A. Benninghoven, F. G. Rudenauer, and H. W. Werner, Secondary Ion Mass Spectrometry (Wiley, New York, 1987).

    Google Scholar 

  9. M. A. Vasil’ev, S. P. Chenakin, and V. T. Cherepin, Izv. Akad. Nauk SSSR, Ser. Fiz. 40, 2428 (1976).

    Google Scholar 

  10. V. E. Yurasova, V. T. Cherepin, and Yu. A. Ryzhov, J. Surf. Invest. 5(3), 465 (2011).

    Article  Google Scholar 

  11. Yu. T. Matulevich, Candidate’s Dissertation in Mathematical Physics (Physical Faculty, Moscow State University, Moscow, 2000).

  12. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature (London) 438, 197 (2005).

    Article  ADS  Google Scholar 

  13. Z. Chen, Y.-M. Lin, M. J. Rooks, and Ph. Avouris, Physica E (Amsterdam) 40, 228 (2007).

    Article  ADS  Google Scholar 

  14. V. V. Khvostov, V. G. Babaev, O. Y. Sokol, E. N. Shouleshov, and M. B. Guseva, Surf. Sci. 418, L20 (1998).

    Article  ADS  Google Scholar 

  15. D. V. Klushin, M. Yu. Gusev, S. A. Lysenko, and I. F. Urazgildin, Phys. Rev. B: Condens. Matter 54, 7062 (1996).

    Article  ADS  Google Scholar 

  16. P. Sigmund, Phys. Rev. 184, 383 (1969).

    Article  ADS  Google Scholar 

  17. W. F. van der Weg and P. K. Rol, Nucl. Instrum. Methods 32, 274 (1965).

    Google Scholar 

  18. P. W. Anderson, Phys. Rev. 124, 41 (1961).

    Article  ADS  MathSciNet  Google Scholar 

  19. D. M. Newns, Phys. Rev. [Sect.] B 178, 1123 (1969).

    Article  ADS  Google Scholar 

  20. R. Brako and D. M. Newns, Surf. Sci. 108, 253 (1981).

    Article  ADS  Google Scholar 

  21. M. L. Yu and N. D. Lang, Phys. Rev. B: Condens. Matter 50, 127 (1983).

    ADS  Google Scholar 

  22. Z. Sroubek, Nucl. Instrum. Methods Phys. Res., Sect. B 194, 533 (1982).

    Article  Google Scholar 

  23. N. D. Lang, Phys. Rev. B: Condens. Matter 27, 2019 (1983).

    Article  ADS  Google Scholar 

  24. I. F. Urazgil’din, Phys. Rev. B: Condens. Matter 47, 4139 (1993).

    Article  ADS  Google Scholar 

  25. Z. Sroubek and G. Falcone, Surf. Sci. 197, 528 (1988).

    Article  ADS  Google Scholar 

  26. K. Wittmaack, Phys. Scr. 16, 71 (1983).

    Article  Google Scholar 

  27. G. Falcone, A. Oliva, and Z. Sroubek, Surf. Sci. 177, 221 (1986).

    Article  ADS  Google Scholar 

  28. Z. Sroubek, Phys. Rev. B: Condens. Matter 25, 6046 (1982).

    Article  ADS  Google Scholar 

  29. Z. Sroubek and J. Lorincik, Vacuum 56, 263 (2000).

    Article  Google Scholar 

  30. A. L. Krauss and D. M. Gruen, Surf. Sci. 92, 14 (1980).

    Article  ADS  Google Scholar 

  31. R. G. Hart and C. B. Cooper, Surf. Sci. 94, 105 (1980).

    Article  ADS  Google Scholar 

  32. T. R. Lundquist, J. Vac. Sci. Technol. 15, 684 (1978).

    Article  ADS  Google Scholar 

  33. D. V. Klushin, M. Yu. Gusev, and I. F. Urazgil’din, Nucl. Instrum. Methods Phys. Res., Sect. B 100, 316 (1995).

    Article  ADS  Google Scholar 

  34. V. Makarenko, A. Popov, A. Shaporenko, and A. Shergin, Radiat. Eff. Defects Solids 113, 263 (1990).

    Article  Google Scholar 

  35. J. R. Goldman and J. A. Prybyla, Phys. Rev. Lett. 72, 1364 (1994).

    Article  ADS  Google Scholar 

  36. W. S. Fann, R. Storz, H. V. K. Tom, and J. Borok, Phys. Rev. Lett. 68, 2834 (1992).

    Article  ADS  Google Scholar 

  37. X. Y. Wang, D. M. Riffe, Y. S. Lee, and M. C. Downer, Phys. Rev. B: Condens. Matter 50, 8016 (1994).

    Article  ADS  Google Scholar 

  38. D. V. Klushin, Candidate’s Dissertation in Mathematical Physics (Physical Faculty, Moscow State University, Moscow, 1996).

  39. I. A. Derebas, C. A. Lysenko, Yu. T. Matulevich, and A. A. Promokhov, Izv. Akad. Nauk, Ser. Fiz. 58, 20 (1994).

    Google Scholar 

  40. Yu. T. Matulevich, I. K. Khrustachev, K. F. Minnebaev, I. F. Urazgildin, and V. E. Yurasova, Bull. Russ. Acad. Sci.: Phys. 64, 665 (2000).

    Google Scholar 

  41. V. E. Yurasova, Ion-Surface Interaction (PrimaV, Moscow, 1999) [in Russian].

    Google Scholar 

  42. A. A. Zolotukhin, A. N. Obraztsov, A. O. Ustinov, and A. P. Volkov, J. Exp. Theor. Phys. 124(6), 1154 (2003).

    Article  ADS  Google Scholar 

  43. A. N. Obraztsov, A. V. Tyurina, E. A. Obraztsova, A. A. Zolotukhin, B. Liu, K. C. Chin, and A. T. S. Wee, Carbon 46, 963 (2008).

    Article  Google Scholar 

  44. V. A. Abramenko, D. V. Ledyankin, I. F. Urazgil’din, and V. E. Yurasova, JETP Lett. 44(8), 512 (1986).

    ADS  Google Scholar 

  45. D. V. Ledyankin, I. F. Urazgil’din, and V. E. Yurasova, Sov. Phys. JETP 67(12), 2442 (1988).

    Google Scholar 

  46. M. W. Thompson, Phys. Rep. 69, 335 (1981).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. F. Minnebaev.

Additional information

Original Russian Text © V.V. Khvostov, I.K. Khrustachev, K.F. Minnebaev, E.Yu. Zykova, I.P. Ivanenko, V.E. Yurasova, 2014, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2014, Vol. 145, No. 3, pp. 421–432.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khvostov, V.V., Khrustachev, I.K., Minnebaev, K.F. et al. On the energy spectra of secondary ions emitted from silicon and graphite single crystals. J. Exp. Theor. Phys. 118, 365–374 (2014). https://doi.org/10.1134/S1063776114020113

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776114020113

Keywords

Navigation